
Proof Logging for the Circuit Constraint

Matthew J. McIlree1(B) , Ciaran McCreesh1 , and Jakob Nordström2,3

1 University of Glasgow, Glasgow, Scotland
m.mcilree.1@research.gla.ac.uk

2 University of Copenhagen, Copenhagen, Denmark
3 Lund University, Lund, Sweden

Abstract. Proof logging in constraint programming is an approach to
certifying a conclusion reached by a solver. To allow for this, different
propagators must be augmented to produce justifications for any infer-
ences they make, so that an independent proof checker can certify cor-
rectness. The Circuit constraint is used to enforce a Hamiltonian cycle on
a set of vertices, e.g. for vehicle routing. Maintaining consistency for the
Circuit constraint is hard, so various ad-hoc propagation techniques have
been devised and implemented in solvers. We show that standard Circuit
constraint inference rules can be efficiently justified within a pseudo-
Boolean proof system, either by using a simple sequence of cutting planes
steps or through a conditional counting argument.

Keywords: Proof logging · Circuit · Constraint propagation

1 Introduction

A constraint programming (CP) solver that implements proof logging is able to
provide a strong correctness guarantee for every result it produces. Alongside any
answer, it outputs a formal proof that rigorously demonstrates that the answer
is correct. This is already standard practice in the field of Boolean satisfiability
(SAT) solving [8,32], and will, we believe, be crucial for the acceptance of CP in
safety-critical applications. Proof logging is achieved by having a solver output
justifications for all its reasoning steps in the language of a sound and complete
proof system. Previous work [10,16,25] has shown that it is possible to do this
efficiently for many important constraint propagation algorithms, by using a
pseudo-Boolean (PB) proof system that is based on cutting planes [3,7] along
with further strengthening rules. These proofs are written in a machine-readable
format that can be independently verified using the VeriPB proof checker [2].

A common feature of all propagation algorithms that have been considered
before is that they enforce a strong level of local consistency among the vari-
ables in scope. For example, AllDifferent [10], SmartTable and Regular [25] enforce
domain consistency (DC), while LinearEquality [16] enforces bounds consistency
(BC). To show a proof logging procedure for these constraints is comprehen-
sive, it is sufficient to establish that any DC or BC inference can be justified,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Dilkina (Ed.): CPAIOR 2024, LNCS 14743, pp. 38–55, 2024.
https://doi.org/10.1007/978-3-031-60599-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-60599-4_3&domain=pdf
http://orcid.org/0009-0005-5042-0876
http://orcid.org/0000-0002-6106-4871
http://orcid.org/0000-0002-2700-4285
https://doi.org/10.1007/978-3-031-60599-4_3

Proof Logging for the Circuit Constraint 39

Fig. 1. Interpretation of assignments for six variables constrained by Circuit.

since this demonstrates that certification is possible regardless of how that infer-
ence is actually computed. The same approach is no longer viable when dealing
with more complex propagators that have less clearly defined notions of con-
sistency, as it is harder to capture clearly in advance what propagations are to
be expected. If pseudo-Boolean proof logging is to be applicable to CP in gen-
eral, it is important to show that these types of propagators do not present any
fundamental barriers to its adoption.

In this paper we present proof logging for propagation of the (Hamiltonian)
Circuit constraint. Enforcing domain consistency for Circuit is known to be NP-
hard [19] and so it is generally propagated via ad-hoc propagation rules [4,12,30].
We therefore work from the simplest checking and basic lookahead inferences, up
to more advanced propagation techniques based on depth-first search and iden-
tification of strongly connected components. In each case we briefly outline the
situation in which the inference applies, and find that it can be justified either
by a simple sequence of cutting planes steps, or through a conditional counting
argument. The latter consists of identifying a vertex which cannot reach every
other vertex under some conditions, and deriving PB constraints over auxil-
iary variables that establish the set of reachable vertices is too small. We have
implemented and tested these techniques, building a complete certifying Cir-
cuit propagator comparable in propagation strength to well known open-source
CP solver implementations [6,14,21], and have been able to produce and verify
proofs using this for a variety of instance sizes.

2 Preliminaries

The Circuit constraint uses a successor representation to treat a set of variables
X0 . . . Xn−1, each with domain {0, . . . , n−1} as the vertices of a directed graph.
At any stage in the solving process, an edge (i, j) is viewed as being present
in the graph if and only if j is still in the domain of the variable Xi. Circuit
requires that any assignment represents a Hamiltonian cycle, with the value of
Xi representing the successor of i in a tour that visits all vertices; see Fig. 1.
This is useful for modelling problems such as vehicle routing [22,23], activity
scheduling [9] and other graph problems [4,13]. In CP solvers, propagation for
a global Circuit constraint is generally achieved by first at least partially prop-
agating an AllDifferent and then attempting further propagation based on the
fact that there can be no sub-cycles. At a minimum the algorithm should check

40 M. J. McIlree et al.

whether any sub-cycles are encoded by the current partial assignment and back-
track if so [4], but further lookahead and ad-hoc propagation rules are possible
[12,30].

2.1 Requirements for Proof Logging

To follow the CP proof logging methodology of previous work [16], we are
required to compile any CP problem to a pseudo-Boolean (PB) format. This
is a separate model of the problem that is only used for certification and
should be kept independent of the solving process. In a PB model we are only
allowed 0–1 variables (PB variables), and all constraints must be integer lin-
ear inequalities (PB constraints) over literals, where a literal � is a PB variable
or its negation x̄ = 1 − x. We also allow reified PB constraints of the form∧

r =⇒ ∑k
i=1 ai�i ≥ A, where

∧
r is a conjunction of literals: these are syntac-

tic sugar for
∑

Kr+
∑k

i=1 ai�i ≥ A for K chosen to be sufficiently large. We can
also reify the negation of a PB constraint on the negation of each of the literals
in r, which allows us to define

∧
r ⇐⇒ ∑k

i=1 ai�i ≥ A.
We can create a PB model from a CP problem by associating each integer

variable X with a set of bit variables xb0, xb1, xb2, . . . sufficient to represent every
value in the variable’s domain using a two’s complement representation. We then
encode restrictions on X imposed by CP constraints by adding pseudo-Boolean
constraints over these bit variables. Since this process is not verified in itself, we
should choose simple encodings that establish a clear correspondence between
satisfying assignments of the CP and PB models. To aid this, we can employ
auxiliary PB variables x[i]=j which are defined through reification to be true
precisely when the bit representation of the variable Xi evaluates to the value
j. For example if we have k bits and want to define x[4]=4 we would have PB
constraints equivalent to x[4]=3 ⇐⇒ ∑k−1

i=0 2ix[4]bi = 3. This gives us flexibility
for PB encodings since we can make use of either bitwise or direct representations
for variables depending on what gives us the most straightforward encoding of
each CP constraint. We might also define other auxiliary variables that are not
directly tied to the values of CP variables for use as flags, selectors, or counters.

For a Circuit constraint on n variables X0, . . . , Xn−1, we already know how to
achieve proof-logging for the AllDifferent component [10]. A simple PB encoding
of AllDifferent consists of constraints on each distinct pair of variables (Xl,Xr)
that enforce either Xl < Xr or Xr < Xl depending on a selector bit flr.

We are then left with the task of defining PB constraints that encode the elim-
ination of subcycles. For this we can take inspiration from known SAT encodings,
since a logical clause such as x ∨ ȳ ∨ z̄ is always equivalent to a PB constraint
(x + y + z̄ ≥ 1), and so PB formulas can be viewed as a superset of conjunctive
normal form. There are many possible options for such encodings [17], with dif-
ferent trade-offs, but since our chosen encoding will only be used for certification
and not solving, compactness and obvious correctness is much more important
than strong propagation properties. We make use of a PB encoding that is a
simplified version of the SAT encoding given by Zhou [33, Sec. 4.2], and first

Proof Logging for the Circuit Constraint 41

define an additional set of auxiliary bit variables {p[i]b0, p[i]b1, . . . } for each vari-
able Xi, sufficient to represent the range of integers 0 . . . n − 1. We will use Pi

as a shorthand for the sum
∑

j 2jp[i]bj , and conceptually treat Pi as a variable
in itself, encoded with a sequence of PB bit variables. These bits are then con-
strained to represent the “position” of Xi in the circuit relative to X0, which is
arbitrarily designated as the start vertex. We do this as shown in Algorithm 1:
define P0 = 0, and then require Pj = Pi+1 whenever x[i]=j is true, unless j = 0,
in which case require Pi = n−1. A satisfying assignment to these PB constraints
is only possible when the cycle obtained by following the successors starting from
X0 visits every vertex. The condition Pi = j can then be interpreted as encoding
the fact that “the vertex represented by Xi is the jth vertex visited after vertex
0 in the Hamiltonian cycle”.

Once a valid encoding has been produced, a proof logging CP solver can
justify its reasoning steps by deriving further PB constraints, and recording
them in a proof log file that can eventually be used certify whatever result it
arrives at. Further explanation of how this can be achieved in general for a
backtracking-based CP solver is given by Gocht et al. [16], but for our purposes
the key idea is that whenever the solver backtracks it should be possible to derive
a PB constraint that encodes the negated conjunction of the currently guessed
assignments. For example, if the solver guesses (X0 = 2,X1 = 3,X2 = 1) and
then discovers a contradiction before assigning the remaining variables it should
derive the PB constraint

x[0]=2 + x[1]=3 + x[2]=3 ≥ 1. (1)

As a shorthand we will sometimes denote the solver’s guessed assignments by
G, and use

∧ G to denote the conjunction of pseudo-Boolean literals encoding
them. So in general a backtracking justification is of the form

∧ G =⇒ 0 ≥ 1.
This is somewhat similar to the way lazy clause generation solvers work [27],

except the “explaining” constraints do not inform the solving process, and they
have to be formally derived from the model and previously derived constraints
via VeriPB’s sound and complete proof rules, rather than simply asserted. As
mentioned, these rules are based on the cutting planes proof system: so we can
derive linear combinations of PB constraints, divide with rounding, saturate con-
straints to minimise coefficients, and also use the axiom that any single literal is

42 M. J. McIlree et al.

at least 0; see Buss and Nordström [3] for more details. Additionally, if any aux-
iliary PB variables required are not already defined in the original PB formula,
VeriPB allows them to be introduced dynamically whenever needed as extension
variables during the proof. This is an application of the VeriPB ’s redundance-
based strengthening rule, and for our purposes is only needed to introduce fresh
variables reified on arbitrary constraints [2]. The backtracking justification (1)
itself should be derived via a further rule: the reverse unit propagation (RUP)
rule. This allows derivation of a PB constraint D if the verifier can obtain a
contradiction by iteratively enforcing bounds consistency on the negation of D
along with constraints in the original formula and any previously derived con-
straints. The iterative consistency process is the pseudo-Boolean generalisation
of unit propagation from SAT, and can be performed efficiently by the verifier
[15], allowing “obvious” facts to be made available when checking RUP deriva-
tions. In the example above, since (1) is a clause, the negation asserts that all
the literals are false, i.e. x[0]=2 = x[1]=3 = x[2]=3 = 0, and so for the RUP check
to succeed we would need these assignments to trigger propagations that even-
tually lead the verifier to a contradiction when propagating over the constraints
in the PB model along with those already derived in the proof log.

When the solver performs sophisticated reasoning via bespoke propagation
algorithms, we are able to guarantee that deriving the backtracking clause in this
way will be possible providing any inferences made by a CP propagator at the
given level of search are also be available to the verifier via unit propagation when
performing the RUP check. We can do this by ensuring that

∧ G =⇒ y ≥ 1 is
in the proof log, where y is a PB literal that encodes the propagator’s inference.
So if, under the sequence of guesses used in (1), and prior to backtracking, a
Circuit propagator is able to infer say, X3 = 0, we should somehow derive

x[0]=2 ∧ x[1]=3 ∧ x[2]=3 =⇒ x[3]=0 ≥ 1; (2)

i.e. x[0]=2 + x[1]=3 + x[2]=3 +x[3]=0 ≥ 1. (3)

These justifications are then interleaved with the backtracking clauses, resulting
in the complete proof being essentially a description of the solver’s backtracking
search tree, expressed using RUP steps. What we show in this paper is that a
range of standard Circuit propagation inferences can indeed be efficiently justified
by deriving these intermediate pseudo-Boolean constraints.

3 Proof Logging for Simple Circuit Propagators

The minimum requirement for a Circuit sub-cycle elimination algorithm is that
it is checking : it should return contradiction if a total assignment of the CP
variables contains a small cycle. This requires no justification under our PB
formula (as produced by Algorithm 1), since repeated bounds consistency (unit
propagation) will immediately establish a contradiction. In particular, P0 = 0
together with X0 = v1 will fix Pv1 = 1, and then this together with Xv1 = v2
will fix Pv2 = 2, and so on. Since there must be a small cycle, say of length

Proof Logging for the Circuit Constraint 43

m < n, passing through X0 (as we are assuming AllDifferent has been correctly
enforced), at some point unit propagation will attempt to fix the value of Pvm

when it has already been fixed to a smaller value, arriving at a contradiction.
A better checking propagator can also return contradiction on partial assign-

ments, when they encode a small cycle. This is what Francis and Stuckey [12]
call check, and is a key component of the NoSubtour propagator of Pesant et
al. [29] and the similar NoCycle propagator of Caseau and Laburthe [4]. Such
solver reasoning does require some justification in the proof, since a small cycle
encoded by the partial assignment might not set X0, and the corresponding PB
variables for this are required to set off the chain reaction of unit propagation
and achieve the inconsistent setting of p variables. To create such a justification
we can use the cutting planes addition rule to add together all the corresponding
constraints for the position variables in the cycle, allowing us to unit propagate
a contradiction under the solver’s guesses.

In particular, if a sequence of guesses G includes a small cycle of length
m < n not passing through 0 and consisting of vertices (v1, . . . , vm), we would
add together each of the constraints of the form

x[vi]=vi+1 =⇒ Pvi+1 − Pvi
≥ 1 (4)

(from line 3 in Algorithm 1) for each guessed assignment (Xvi
= vi+1) ∈ G

identified by the propagator as being part of the cycle. Recall from Sect. 2.1 that
these reified PB constraints are actually represented as

K · x[vi]=vi+1
+ Pvi+1 − Pvi

≥ 1 (5)

for some sufficiently large K, and hence each successive addition cancels the
previous Pvi

value. This results in the constraint

K · x[v1]=v2
+ · · · + K · x[vm]=v1

− Pv1 + Pv2 − . . .

· · · − Pvm−1 + Pvm
− Pvm

+ Pv1 ≥ m, (6)

which telescopes to

K · x[v1]=v2
+ · · · + K · x[vm]=v1

≥ m. (7)

With this constraint present in the proof log, unit propagation of the small
cycle in G will obviously lead to 0 ≥ m, a contradiction, and hence (7) is adequate
to allow justification within the proof framework for the solver backtracking.

The above idea can be easily be extended to produce justifications for a
basic lookahead version of the check propagator, called prevent by Francis and
Stuckey [12], which is described in the literature [4,29,30]. This filters domains
by disallowing any further assignments that would immediately complete a sub-
cycle. So if a sequence of guesses G includes the encoding of a chain of vertices
(v1, . . . , vm), prevent would remove v1 from the domain of Xvm

, and this can be
justified by first deriving (7) exactly as above, which then allows us to derive∧ G =⇒ x[vm]=v1

by RUP, as required.

44 M. J. McIlree et al.

4 Proof Logging for Stronger Propagation

There are several possibilities for stronger propagation for the Circuit constraint,
although there is no general consensus between solvers on which forms are worth-
while in practice. This paper does not argue for one propagation strategy over
any other; rather, our focus is to show that whatever propagator is chosen, it
should be feasible to implement a proof logging version of it. We will demon-
strate that it is possible to provide pseudo-Boolean proof logging for Circuit
propagators that make use of more complex reasoning by considering a further
propagator and set of associated possible inferences. This algorithm is based on
analysis of the depth-first spanning tree obtained during a search of the domain
graph for strongly connected components (SCCs). Stuckey and Francis call it the
SCC algorithm [12] and versions of it are implemented in the solvers Gecode [14],
Chuffed [6], JaCoP [21], and CP-SAT [28] among others.

Let G = (V,E) be a graph, and let R be the (directed) reachability relation
on G—for v, w ∈ V, (v, w) ∈ R if and only if there exists a path from v to w. We
will denote by Reach(v) the set {w : (v, w) ∈ R}, i.e. the set of all vertices in
G reachable from v. The core observation used by the SCC algorithm for Circuit
propagation is that if the graph contains a Hamiltonian circuit, then it can only
have a single strongly connected component, which means every vertex must be
reachable from every other vertex. Thus, if we identify more than one strongly
connected component in the graph induced by the current domains of variables
in scope we can backtrack early, as no satisfying Circuit assignment is possible.

At any given point in the process of solving a constraint satisfaction problem
involving a Circuit constraint on variables X0, . . . , Xn−1, let G be the graph that
has a directed edge (v, w) whenever w is still in the domain of Xv. To simplify the
discussion of proof logging for the SCC algorithm, we will assume in what follows
that if we can identify a vertex v in this graph such that |Reach(v)| < |G| then
we can run a proving procedure ReachTooSmall(v) that derives in the proof log
a contradiction subject to the current sequence of guesses i.e.

∧ G ⇒ 0 ≥ 1.
Furthermore, we will assume that if we have an additional “assumption” PB
literal � that encodes a further restriction on the graph so that |Reach(v)| < |G|
we can similarly run ReachTooSmall(v) and derive

∧ G ∧ � ⇒ 0 ≥ 1. We will
later outline in Sect. 4.2 and Sect. 4.3 how ReachTooSmall can construct this
argument using proof steps recognised by VeriPB .

The SCC propagator is based on Tarjan’s algorithm [31], which uses the fact
that strongly connected components always form subtrees of a depth-first span-
ning forest of the graph. It initiates a depth-first search (DFS) from a chosen
arbitrary vertex v0, and immediately returns contradiction if any of its descen-
dants are identified as the root of an SCC. To justify backtrack in this case we
can run ReachTooSmall(w), where w is the root of the identified SCC. This will
always prove contradiction as v0 cannot possibly be reachable from w, otherwise
v0 would also be part of the SCC and hence w would not be the SCC root.

A vertex can only be identified as the root of an SCC once all of its descen-
dants have been visited during the DFS. So if none of v0’s descendants are iden-
tified as SCC roots, it must be that all the vertices reachable from v0 comprise

Proof Logging for the Circuit Constraint 45

a single SCC. In this case, either DFS has visited every vertex, in which case
there is no contradiction for Circuit, or else there is some vertex not reachable
from v0 and the propagator returns a contradiction. The latter can clearly be
justified by ReachTooSmall(v0).

Backtracking when the domain graph is disconnected or contains more than
one SCC seems to be the most commonly implemented technique for SCC prop-
agation, based on our examination of source code for open source solvers. Several
solvers such as Gecode and Chuffed also implement further ad-hoc propagation
opportunities when multiple distinct subtrees are explored below v0. In each of
the following cases we state a propagation rule applicable as part of the SCC
algorithm and briefly indicate how ReachTooSmall can be used to justify these
too. Figure 2 gives an illustration for each.

1. Prune any edge (w, v0) where v0 is the starting vertex and w is not in the earli-
est visited subtree [12]. To justify this we use x[w]=v0 as an assumption literal
and run ReachTooSmall(r), where r is the root of a subtree visited earlier
than the one containing w. Unit propagation of x[w]=v0 will force x[w′]=v0 = 0
for all w′ �= w due to the encoding of AllDifferent, so the assumption excludes
any edges from descendants of r leading to v0. Since vertices in this earlier
subtree cannot have any edges leading to vertices in w’s subtree or later, oth-
erwise they would have been traversed as part of the same subtree by DFS,
it follows that r cannot reach w. Hence, ReachTooSmall(r) can be used to
establish

∧ G ∧ x[w]=v0 ⇒ 0 ≥ 1. See Fig. 2a.
2. Prune any edge (v0, w) where v0 is the starting vertex and w is not in the

latest visited subtree [30]. Similarly, we use x[v0]=w as an assumption, and this
time run ReachTooSmall(w) to obtain a contradiction under the assumption.
Since w can only reach vertices in its own subtree or earlier, and v0 no longer
has edges to the later subtrees, it is clear than not everything can be reached
from w. See Fig. 2b.

3. Prune any edge (v, w), where w is v’s first child, and no edges from vertices
in the subtree rooted at w lead to vertices visited earlier in the DFS than v
[12]. Here we can run ReachTooSmall(w) under the assumption x[v]=w, since
fixing the successor of v to be w eliminates any possibility of reaching any
nodes visited earlier than v from w. See Fig. 2c.

4. Prune any edge (v, w) that skips a subtree, that is, where v is in the ith
visited subtree and w visited earlier than the root of the (i − 1)th subtree
[30]. Intuitively this rule is sound because if the edge (v, w) were used in
the circuit we would have to visit the initial node v0 between visiting w and
visiting the root r of the (i − 1)th subtree, but also visit v0 between visiting
r and visiting v, and both of these cannot be simultaneously true. A single
assumption and ReachTooSmall argument is not always sufficient to justify
this pruning, but our intuition can be encoded using two ReachTooSmall
arguments and more complex assumptions. If r is the root of the (i − 1)th
subtree, we assume first that r must be seen at some point between w and
v0 (denoted as w ≺ r ≺ v0) and then run ReachTooSmall(v). This will
derive a contradiction as every path from the subtree containing w to the

46 M. J. McIlree et al.

Fig. 2. Illustrations of how each SCC inference can be justified. Three distinct sub-
trees explored by a DFS of the domain graph starting at v0 are indicated with triangles.
The dashed edge is the one assumed to be used as part of the circuit (via the corre-
sponding variable assignment), and the double ringed node is the one passed to the
ReachTooSmall procedure.

subtree rooted at r must pass through v0 and so there will be no way to
reach v0 without violating the assumption. We can similarly assume that v
must be seen between r and v0 (r ≺ v ≺ v0) and establish a contradiction

Proof Logging for the Circuit Constraint 47

using ReachTooSmall(v). Note that this establishes the negation of our two
assumptions, namely that v0 must be seen both between w and r (v ≺ v0 ≺ r)
and between r and v (r ≺ v0 ≺ w) which is impossible if w is the immediate
successor of v. So altogether, if we can encode these ordering assumptions in
pseudo-Boolean form, and run ReachTooSmall subject to them, we should
also be able to justify this pruning inference. See Fig. 2d.

5. Return a contradiction if there are no backedges identified after exploring any
subtree later than the first [30]. Backedges are edges from a node in the ith
subtree to a node in the (i − 1)th . To justify contradiction in a case where a
subtree rooted at w has no backedges we can run ReachTooSmall(w). Since
any edges that skip subtrees have been removed at this point, by rule 3.,
and the only edges left leading to the initial node v0 come from the earliest
subtree, by rule 1., the only way to escape the subtree rooted at w would be
through a backedge, and so ReachTooSmall(w) will establish a contradiction.
Similarly, if there is only a single backedge (v, w) we can justify the fixing
of Xv = w, by first assuming that it is not taken, i.e. x[v]=w, and running
ReachTooSmall(v). See Fig. 2e.

These are all the inference rules we implemented in our prototype certifying
Circuit propagator, as discussed in Sect. 5. We observe, however, that similar
strategies may be used to introduce proof logging for other ad-hoc techniques. For
example, if the algorithm is based on identifying strong bridges [18] and requiring
them to be part of the solution, clearly a ReachTooSmall argument must be
applicable if the bridge is assumed to be excluded. Another set of inferences can
be applied if the Circuit is first relaxed to a path constraint [11], and the structural
filtering of the reduced graph used here is essentially a generalisation of rule 4
(“prune skip”) and so should be amenable to justification using ReachTooSmall
and ordering assumptions.

4.1 Proving a Set Reachable from Vertex 0 is Too Small

We have shown in the previous section that all the inferences performed by a typ-
ical SCC propagator can be justified within a proof log if we are able to construct
a sequence of PB steps ReachTooSmall(v) that establishes a contradiction for
any vertex v in the graph G induced by the current domains of variables where
|Reach(v)| ≤ |G|. It needs to be possible to construct these steps subject to
three kinds of assumption, namely, assuming an edge is required, assuming an
edge is disallowed, and an “ordering assumption”: assuming that a particular
vertex must be seen between two other vertices. We now give a sketch for how
such an argument can be constructed. First we will show, by way of example,
how to construct it when running from the 0 index vertex, ReachTooSmall(0),
without assumptions, as this is the simplest case. We later show how this can
be modified to work for an arbitrary vertex v, and then finally show how the
assumptions can be taken into account.

The idea is to collect possible position values (as defined in Algorithm 1) in a
breadth-first search from the starting node. We create auxiliary variables p[i]=k

48 M. J. McIlree et al.

defined through reification to be true if and only if the bit sum Pi is equal to
k, and we aim to derive sets of PB constraints enforcing AtLeast1 and AtMost1
requirements over all of the possible i values for each k ∈ {0, . . . , |Reach(0)|}.
As an example, suppose the domain graph under a sequence of guesses G is
as represented in Fig. 1c. Clearly Reach(0) = {0, 1, 5}, which has fewer that
6 elements, so we should be able to run ReachTooSmall(0). In this particular
case the procedure would derive constraints (8) to (11) which show that for
each k ∈ {0, 1, 2, 3} at least one of the vertices 0, 1, 5 must have position value
k. It would then derive corresponding constraints (12) to (14) which express
the fact that each vertex can have at most one position value. Note that these
are all reified on the sequence of solver guesses, but the

∧ G ⇒ is omitted for
compactness.

AtLeast1 constraints:

p[0]=0 ≥1 (8)
p[1]=1 + p[5]=1 ≥1 (9)

p[0]=2 + p[1]=2 + p[5]=2 ≥1 (10)
p[0]=3 + p[1]=3 + p[5]=3 ≥1 (11)

AtMost1 constraints:

−p[0]=0 −p[0]=2 − p[0]=3 ≥−1 (12)
−p[1]=1 − p[1]=2 − p[1]=3 ≥−1 (13)
−p[5]=1 − p[5]=2 − p[5]=3 ≥−1 (14)

Using the addition rule the procedure can then derive the sum of all these
constraints, and by construction everything on the left-hand side will cancel out,
leaving G ⇒ 0 ≥ 1, as required. This process similar to how Hall violators for
AllDifferent are derived by Elffers et al. [10].

It remains to show how the AtLeast1 and AtMost1 constraints can be derived
using VeriPB proof rules. The first AtLeast1 (8) can be introduced by RUP, since
p[0]=0 propagates directly from the encoding. Then, each subsequent constraint
can be derived from the previous constraint by first deriving some intermediate
reified constraints by RUP, adding them together, and applying the saturation
rule [3], which reduces any unnecessarily large coefficients. For example to derive
(10) from (9) we would use the following proof steps:

x[1]=0 + x[1]=5 ≥1 (RUP) (15)

p[1]=1 + x[1]=0 + p[0]=2 ≥1 (RUP) (16)

p[1]=1 + x[1]=5 + p[5]=2 ≥1 (RUP) (17)

p[1]=1 + p[0]=2 + p[5]=2 ≥1 ((15) + (16) + (17), sat.) (18)

p[5]=1 + p[0]=2 + p[1]=2 ≥1 (similarly) (19)
p[0]=2 + p[1]=2 + p[2]=2 ≥1 (9) + (18) + (19), sat.) (20)

To derive each of the AtMost1 constraints, we first introduce constraints
p[i]=k + p[i]=l ≥ 1 by RUP for each distinct pair of values (l, k) values possible
for Pi. We then add these together but divide by j after adding the jth constraint
to recover the required constraint.

Proof Logging for the Circuit Constraint 49

4.2 Proving a Set Reachable from an Arbitrary Vertex is Too Small

The above example establishes the general structure of the ReachTooSmall pro-
cedure: we collect AtLeast1 constraints over auxiliary position variables until we
have more values than variables, and then add recovered AtMost1 constraints
to these to obtain contradiction. However, the specifics of deriving the AtLeast1
constraints depended on us starting from the 0 vertex, as this is required in
the encoding to be 0. There is nothing particularly special about the 0 vertex,
but without requiring some position label Pi = 0 there would be n isomorphic
solutions to the PB model for each arbitrary choice of starting vertex in a corre-
sponding solution to the CP model. For our justifications from Sect. 4 to work,
we need to be able to run ReachTooSmall(v) from an arbitrary vertex, and so
we need a way to start the breadth-first search for possible positions without
necessarily knowing with the position of the first node might be.

The idea is to dynamically introduce a new set of position labels {q[r, i] : 1 ≤
i ≤ n} for a given starting vertex r, that are tied to the value of the Pi variables
but represent what would be obtained if the value of each Pi was shifted back
modulo n so that Pr = 0. Specifically we should have q[r, i] = Pi − Pr mod n.
This preserves the useful property that if Xi = j then q[r, j] = q[r, i] + 1 mod n,
as is true for the p variables. By construction we must have q[r, r] = 0, and so
we should be able to collect sets of possible q[r, i] variables for each subsequent
value and use this to construct our ReachTooSmall argument as before.

As with the other auxiliary variables, flags for these q variables can be intro-
duced in the proof as needed using VeriPB’s redundance-based strengthening
rule. We do require some additional d[r, i] flags to encode the definitions in
pseudo-Boolean form, to correct for when the difference Pi − Pr is less than 0.
Specifically, whenever we require a variable q[r, i]=k we introduce the following.

d[r, i] =⇒ Pr − Pi ≥1 (21)

d[r, i] =⇒ Pi − Pr ≥1 (22)
q[r, i]≥k ⇐⇒ Pi − Pr + nd[r, i] ≥k (23)

q[r, i]≥k ⇐⇒ q[r, i]≥k + q[r, i]≥k+1 ≥2 (24)

These can each be introduced by redundance, and only need to be defined once
for each combination of r, i, and k. One technicality is that for the constraint
(22) we do require a subproof that establishes Pi �= Pr in order to apply redun-
dance, but this is straightforward since we can pay a one-time cost to recover an
AllDifferent constraint (AtLeast1 and AtMost1 constraints) over the p variables
at the very start of the proof.

With these in place, we can outline the general procedure for constructing
a ReachTooSmall argument from an arbitrary vertex, which is shown in Algo-
rithm 2. All of the statements marked with derive can be derived from the
PB model and the previous statements either with a single RUP step, or by a
sequence of cutting planes steps followed by a RUP step. For lines 10, 12, and 23

50 M. J. McIlree et al.

this is just adding up the defining constraints for the auxiliary variables involved
so that any p and d variables cancel out—we omit the details for brevity.

4.3 Proving Reach is Too Small with Assumptions

The procedure outlined in Algorithm 2 requires minimal modification to work
with assignment assumptions. Assuming Xi = j or Xi �= j means including a PB
variable encoding the assumption as an additional guess in

∧ G, and skipping any
domain values excluded by this assumption (either trivially or by AllDifferent)
when iterating through the domains on line 5. This will allow the procedure to
derive

∧ G ∧ x[i]=j =⇒ 0 ≥ 1 or
∧ G ∧ x[i]=j =⇒ 0 ≥ 1, as required.

Proof Logging for the Circuit Constraint 51

More care is required to encode and use ordering assumptions as discussed
in Sect. 4. If we want to force the ReachTooSmall(r) to assume that r ≺ a ≺ b,
that is, a vertex a must be visited before b when following a path from r, we
first have to encode this assumption and reify it with its own flag. We can use
auxiliary variables d[i, j], defined as in (21) and (22) to do this:

ar≺a≺b ⇐⇒ d[r, a] + d[a, b] + d[b, r] ≥ 2 (25)

We can then include ar≺a≺b as an additional “guess” and use it to exclude
q[r, b]=k from any AtLeast1 constraint where, for k′ < k, q[r, a]=k′ was not part
of a previous AtLeast1. This is achieved by deriving q[r, a]≥1 after, line 1, and
subsequently q[r, a]≥k after line 15, and using these to derive ar≺a≺b∧q[r, i]=k+1∧
x[i]=b =⇒ 0 ≥ 1 instead of line 10 whenever j = b. Once again these each
amount to steps adding up definition constraints, followed by a RUP step, and
we omit the details for brevity.

We note that the encoding of ordering assumptions (25) allows the justifica-
tion of the prune skip inference with two conditional ReachTooSmall arguments,
as discussed in Sect. 4. When ReachTooSmall arrives at a contradiction under
an ordering assumption, the negation is established, and we can add up defini-
tions for e.g. āj≺r≺v0 , ār≺i≺v0 , x[i]=j to cancel out p and d variables and arrive
at a final contradiction for this inference.

5 Implementation and Evaluation

We have implemented proof logging versions of the check, prevent and SCC
propagators (with all inference rules discussed in Sect. 5) using the techniques
described in this paper as part of the auditable Glasgow Constraint Solver
project [24], and we included in our implementation all the inference methods
available in the Circuit propagators of Gecode [14]. We tested our implemen-
tation1 by solving randomly generated travelling salesperson problems (TSPs),
with graphs ranging in size from 3 to 40 vertices. The potential of proof logging

Fig. 3. Scatter plot of results of solving randomly generated TSP instances.

1 https://zenodo.org/records/10848992.

https://zenodo.org/records/10848992

52 M. J. McIlree et al.

as a powerful debugging and development tool was immediately apparent from
this, as initial proof failures immediately indicated bugs in our implementation
such as prevent trying to disallow full circuits in certain situations, or SCC try-
ing to apply an incorrect inference based on the structure of the graph. This
aligns with the results of previous research projects, where the implementation
of proof logging uncovered hard-to-find bugs in well-tested combinatorial solvers
[1,5,20]. Once the bugs were addressed, all proofs were verified as correct using
VeriPB . The performance data from our evaluation is shown in Fig. 3.

There is clearly a cost in terms of overhead from enabling proof logging,
although the exact slowdown is very dependent on hardware since we are writ-
ing to disk and using a non-optimised text-based proof format. What is clear
is that the overhead is not unreasonable, with time to produce the proofs scal-
ing roughly in proportion the time taken to solve without proof logging. This is
what we would expect: our proof procedures for check and prevent output exactly
one sequence of cutting planes steps for each subcycle prevented or disallowed,
and so clearly are not doing significantly more work than the propagators them-
selves. Similarly, the ReachTooSmall procedure is called once for every inference
(except the “prune skip” inference where it is called twice) and can at worst gen-
erate a number of proof steps proportional to n · E where E is the number of
edges currently encoded by the domains of variables. Since Tarjan’s algorithm
itself runs in O(n + E), we are satisfied that we are roughly within a linear
factor of the amount of work done by the propagator and that our proof logging
procedure is practical and free from any exponential blow up.

Additionally, we tested the TSP instance from the MiniCP benchmark suite
of Michel et al. [26]. This was created for testing CP solver speed, and took
the Glasgow Constraint Solver 44.9407 s to solve without proof logging (using
full Circuit and AllDifferent propagation, not the simple propagation used by
MiniCP). With proof logging, it took 3603.84 s (∼1 h) to solve, and VeriPB
needed 585893.41 s (∼ 1 week) to verify the produced proof. This, together with
previously implemented constraints [16], brings the Glasgow Constraint Solver in
line with MiniCP in terms of propagators implemented and instance modelling
capabilities.

6 Conclusion

We have exhibited the first certifying Circuit propagator using VeriPB proof log-
ging, showing that ad-hoc inference rules with complicated notions of consistency
can be included in an auditable constraint solver. In particular, we found that
a range of standard inference types could make use of similar proof procedures,
taking advantage of concepts such as connectedness and vertex ordering despite
the proof system having no native representantions of these notions, or even
of a graph. We expect that the core concepts exemplified here: such as count-
ing reachable vertices under implications; creating shifted auxiliary labels; and
running proof procedures under ordering assumptions will be useful for other
constraints, and for proof logging combinatorial solving more generally.

Proof Logging for the Circuit Constraint 53

Acknowledgements. Ciaran McCreesh was supported by a Royal Academy of Engi-
neering research fellowship, and by the Engineering and Physical Sciences Research
Council [grant number EP/X030032/1]. Jakob Nordström was supported by the
Swedish Research Council grant 2016-00782 and the Independent Research Fund Den-
mark grant 9040-00389B. For the purpose of open access, the authors have applied
a creative commons attribution (CC BY) licence to any author accepted manuscript
version arising from this work.

References

1. Berg, J., Bogaerts, B., Nordström, J., Oertel, A., Vandesande, D.: Certified core-
guided MaxSAT solving. In: Pientka, B., Tinelli, C. (eds.) CADE 2023. LNCS,
vol. 14132, pp. 1–22. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
38499-8 1

2. Bogaerts, B., Gocht, S., McCreesh, C., Nordström, J.: Certified symmetry and
dominance breaking for combinatorial optimisation. J. Artif. Intell. Res. 77, 1539–
1589 (2023). Preliminary version in AAAI 2022

3. Buss, S.R., Nordström, J.: Proof complexity and SAT solving. In: Biere, A., Heule,
M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in
Artificial Intelligence and Applications, vol. 336, chap. 7, 2nd edn., pp. 233–350.
IOS Press (2021)

4. Caseau, Y., Laburthe, F.: Solving small TSPs with constraints. In: Naish, L. (ed.)
Logic Programming, Proceedings of the Fourteenth International Conference on
Logic Programming, Leuven, Belgium, 8–11 July 1997, pp. 316–330. MIT Press
(1997)

5. Cheung, K.K.H., Gleixner, A., Steffy, D.E.: Verifying integer programming results.
In: Eisenbrand, F., Koenemann, J. (eds.) IPCO 2017. LNCS, vol. 10328, pp. 148–
160. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59250-3 13

6. Chu, G., Stuckey, P.J., Schutt, A., Ehlers, T., Gange, G., Francis, K.: Chuffed, a
lazy clause generation solver (2023). https://github.com/chuffed/chuffed

7. Cook, W., Coullard, C.R., Turán, Gy.: On the complexity of cutting-plane
proofs. Discrete Appl. Math. 18(1), 25–38 (1987). https://doi.org/10.1016/0166-
218X(87)90039-4

8. Cruz-Filipe, L., Heule, M.J.H., Hunt, W.A., Kaufmann, M., Schneider-Kamp, P.:
Efficient certified RAT verification. In: de Moura, L. (ed.) CADE 2017. LNCS
(LNAI), vol. 10395, pp. 220–236. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63046-5 14

9. Di Gaspero, L., Urli, T.: A CP/LNS approach for multi-day homecare scheduling
problems. In: Blesa, M.J., Blum, C., Voß, S. (eds.) HM 2014. LNCS, vol. 8457, pp.
1–15. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07644-7 1

10. Elffers, J., Gocht, S., McCreesh, C., Nordström, J.: Justifying all differences using
pseudo-boolean reasoning. In: The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, 7–12 February
2020, pp. 1486–1494. AAAI Press (2020)

11. Fages, J.G., Lorca, X.: Improving the asymmetric TSP by considering graph struc-
ture (2012). https://doi.org/10.48550/arXiv.1206.3437

12. Francis, K.G., Stuckey, P.J.: Explaining circuit propagation. Constraints 19(1),
1–29 (2014). https://doi.org/10.1007/s10601-013-9148-0

https://doi.org/10.1007/978-3-031-38499-8_1
https://doi.org/10.1007/978-3-031-38499-8_1
https://doi.org/10.1007/978-3-319-59250-3_13
https://github.com/chuffed/chuffed
https://doi.org/10.1016/0166-218X(87)90039-4
https://doi.org/10.1016/0166-218X(87)90039-4
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-319-07644-7_1
https://doi.org/10.48550/arXiv.1206.3437
https://doi.org/10.1007/s10601-013-9148-0

54 M. J. McIlree et al.

13. Gaspero, L.D., Rendl, A., Urli, T.: Balancing bike sharing systems with constraint
programming. Constraints 21(2), 318–348 (2016). https://doi.org/10.1007/s10601-
015-9182-1

14. Gecode Team: Gecode: generic constraint development environment (2023). http://
www.gecode.org

15. Gocht, S.: Certifying correctness for combinatorial algorithms: by using pseudo-
Boolean reasoning. Ph.D. thesis, Lund University, Sweden (2022)

16. Gocht, S., McCreesh, C., Nordström, J.: An auditable constraint programming
solver. In: Solnon, C. (ed.) Proceeding of the 28th International Conference on
Principles and Practice of Constraint Programming. Leibniz International Pro-
ceedings in Informatics (LIPIcs), vol. 235, pp. 25:1–25:18. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, Dagstuhl (2022). https://doi.org/10.4230/LIPIcs.
CP.2022.25

17. Heule, M.J.H.: Chinese remainder encoding for Hamiltonian cycles. In: Li, C.-M.,
Manyà, F. (eds.) SAT 2021. LNCS, vol. 12831, pp. 216–224. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-80223-3 15

18. Italiano, G.F., Laura, L., Santaroni, F.: Finding strong bridges and strong artic-
ulation points in linear time. Theoret. Comput. Sci. 447, 74–84 (2012). https://
doi.org/10.1016/j.tcs.2011.11.011

19. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations.
The IBM Research Symposia Series, pp. 85–103. Springer, Boston (1972). https://
doi.org/10.1007/978-1-4684-2001-2 9

20. Kraiczy, S., McCreesh, C.: Solving graph homomorphism and subgraph isomor-
phism problems faster through clique neighbourhood constraints. In: Zhou, Z. (ed.)
Proceedings of the Thirtieth International Joint Conference on Artificial Intel-
ligence, IJCAI 2021, Virtual Event/Montreal, Canada, 19–27 August 2021, pp.
1396–1402. ijcai.org (2021). https://doi.org/10.24963/IJCAI.2021/193

21. Kuchcinski, K., Szymanek, R.: JaCoP - Java constraint programming solver. In:
CP Solvers: Modeling, Applications, Integration, and Standardization, Co-located
with the 19th International Conference on Principles and Practice of Constraint
Programming (2013)

22. Lam, E., Van Hentenryck, P.: A branch-and-price-and-check model for the vehi-
cle routing problem with location congestion. Constraints 21(3), 394–412 (2016).
https://doi.org/10.1007/s10601-016-9241-2

23. Lam, E., Van Hentenryck, P., Kilby, P.: Joint vehicle and crew routing and schedul-
ing. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 654–670. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-23219-5 45

24. McCreesh, C., McIlree, M.: The Glasgow constraint solver. GitHub repository
(2023). https://github.com/ciaranm/glasgow-constraint-solver

25. McIlree, M.J., McCreesh, C.: Proof logging for smart extensional constraints. In:
Yap, R.H.C. (ed.) 29th International Conference on Principles and Practice of
Constraint Programming (CP 2023). Leibniz International Proceedings in Infor-
matics (LIPIcs), vol. 280, pp. 26:1–26:17. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, Dagstuhl (2023). https://doi.org/10.4230/LIPIcs.CP.2023.26

26. Michel, L.D., Schaus, P., Van Hentenryck, P.: MiniCP: a lightweight solver for
constraint programming. Math. Program. Comput. 13(1), 133–184 (2021). https://
doi.org/10.1007/s12532-020-00190-7

27. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation = lazy clause generation.
In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 544–558. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74970-7 39

https://doi.org/10.1007/s10601-015-9182-1
https://doi.org/10.1007/s10601-015-9182-1
http://www.gecode.org
http://www.gecode.org
https://doi.org/10.4230/LIPIcs.CP.2022.25
https://doi.org/10.4230/LIPIcs.CP.2022.25
https://doi.org/10.1007/978-3-030-80223-3_15
https://doi.org/10.1016/j.tcs.2011.11.011
https://doi.org/10.1016/j.tcs.2011.11.011
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.24963/IJCAI.2021/193
https://doi.org/10.1007/s10601-016-9241-2
https://doi.org/10.1007/978-3-319-23219-5_45
https://github.com/ciaranm/glasgow-constraint-solver
https://doi.org/10.4230/LIPIcs.CP.2023.26
https://doi.org/10.1007/s12532-020-00190-7
https://doi.org/10.1007/s12532-020-00190-7
https://doi.org/10.1007/978-3-540-74970-7_39

Proof Logging for the Circuit Constraint 55

28. Perron, L., Didier, F.: CP-SAT. https://developers.google.com/optimization/cp/
cp solver/

29. Pesant, G., Gendreau, M., Potvin, J.Y., Rousseau, J.M.: An exact constraint logic
programming algorithm for the traveling salesman problem with time windows.
Transp. Sci. 32(1), 12–29 (1998). https://doi.org/10.1287/trsc.32.1.12

30. Schulte, C., Tack, G.: Weakly monotonic propagators. In: Gent, I.P. (ed.) CP
2009. LNCS, vol. 5732, pp. 723–730. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-04244-7 56

31. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2),
146–160 (1972). https://doi.org/10.1137/0201010

32. Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: efficient checking and trim-
ming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS,
vol. 8561, pp. 422–429. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09284-3 31

33. Zhou, N.-F.: In pursuit of an efficient SAT encoding for the Hamiltonian cycle
problem. In: Simonis, H. (ed.) CP 2020. LNCS, vol. 12333, pp. 585–602. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-58475-7 34

https://developers.google.com/optimization/cp/cp_solver/
https://developers.google.com/optimization/cp/cp_solver/
https://doi.org/10.1287/trsc.32.1.12
https://doi.org/10.1007/978-3-642-04244-7_56
https://doi.org/10.1007/978-3-642-04244-7_56
https://doi.org/10.1137/0201010
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/978-3-030-58475-7_34

	Proof Logging for the Circuit Constraint
	1 Introduction
	2 Preliminaries
	2.1 Requirements for Proof Logging

	3 Proof Logging for Simple Circuit Propagators
	4 Proof Logging for Stronger Propagation
	4.1 Proving a Set Reachable from Vertex 0 is Too Small
	4.2 Proving a Set Reachable from an Arbitrary Vertex is Too Small
	4.3 Proving Reach is Too Small with Assumptions

	5 Implementation and Evaluation
	6 Conclusion
	References

